
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2002; 40:361–368 (DOI: 10.1002/�d.292)

Structured multigrid agglomeration on a data structure
for unstructured meshes

V. Hannemann∗

Institute of Aerodynamics and Flow Technology; German Aerospace Center; DLR;
Bunsenstr. 10; 37073 G�ottingen; Germany

SUMMARY

A key issue for using multigrid as an acceleration technique on unstructured meshes is the generation
of the coarse grid levels. Some new ideas are presented to improve the agglomeration of coarse cells
in hybrid grids with respect to the structure of hexahedral or prismatic layers. The algorithms are
embedded in the standard advancing front method which works locally on the edge based data structure
representing the dual grid. The goal is to preserve the topological structure of the hexahedral and
prismatic parts as far as possible. As a result of the structure preservation a desired coarsening ratio
(number of �ne grid volumes per coarse grid volume), responsible for the memory requirements and
the computing time spent in looping over all volumes, can be achieved with a minimal number of
edges, which is linked to the major working time spent in loops over all edges. Copyright ? 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Most adaptive methods in CFD use unstructured meshes to provide local re�nement strategies.
Depending on the scales to be resolved in di�erent directions, these meshes may consist of
hexahedral, prismatic, pyramidal and tetrahedral elements. Tetrahedra are good for isotropic
resolution, while hexahedra and prisms are more suited for boundary layers where the wall
normal scale has to be discretized more �nely than the tangential scales. Although the bound-
ary layers cover only a small part of the computational domain they need usually more than
80% of all cells to be resolved. Therefore, the hexahedral and prismatic parts of a hybrid grid
play the major role in discretizing viscous �ow �elds.
To reduce memory requirements, �nite volume methods working on dual grids as control

volumes are popularly used. The primary grid is transformed into an edge based data structure,
neglecting all information which is not necessary for the equation solver. Thus the volumes
and the node connections with attached surface vectors are stored, but the primary grid cells
do not exist in the dual grid.
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Multigrid is one of the best convergence acceleration techniques. Lallemand et al. [1]
introduced an agglomeration procedure to create the coarse grid cells by fusing cells from
the next �ner level. Several improvements have been made to the isotropic agglomeration of
tetrahedral grids in order to optimize the fused cells according to a surface to volume ratio
and to the coarsening ratio between di�erent grid levels [2–5]. All these approaches work on
the dual grid data structure to enable the generation of multiple coarser grids by the same
algorithm. The additional knowledge about the cell types of the primary grid cannot be used,
because the agglomerated volumes can in general not be mapped on a valid primary grid.
Applying these techniques to prismatic or hexahedral grid parts (normally associated with

high aspect ratios) does not provide optimal results [5]. Therefore, directional or semi-
coarsening algorithms are used [3, 5]. The search for cells connected via the largest face
is repeated to achieve better coarsening ratios than 2. The border between semicoarsening and
isotropic agglomeration in a hybrid grid is determined by cell aspect ratios, or by the number
of minimal edges distance to a speci�ed boundary. Depending on the initial discretization, all
approaches in�uence the topological structure of prismatic or hexahedral layers on the coarser
meshes.
This paper presents topological arguments to di�erentiate between tetrahedral, prismatic and

hexahedral connectivity parts on the dual grids. The standard advancing front algorithm for
an isotropic agglomeration [1, 2, 5] is modi�ed with the aim at preserving the topological
structure of the dual grids on the coarser levels as far as possible.
An investigation of the multigrid performance according to di�erent agglomerated grids is

very much dependent on the multigrid algorithms and parameters used in the equation solver
and therefore beyond the scope of this paper.

2. TOPOLOGICAL ASPECTS

To topologically characterize the di�erent dual grid parts arising from tetrahedral, prismatic
or hexahedral parts of the primary grid, the following de�nitions are useful:

• Two control volumes sharing a common face are called direct neighbours of each other.
• A control volume V1 is called an indirect neighbour of a control volume V2 if they are
not direct neighbours but have a direct neighbour in common.

• All control volumes sharing at least one point with a control volume V1 are called the
neighbourhood NV1 of V1.

• A single-connected neighbour is a direct neighbour of a control volume V1, which does
not share any direct neighbours with V1.

Based on these de�nitions the parts of the dual grid can be described as:

• Tetrahedral connectivity: The connectivity of a control volume is called tetrahedral con-
nectivity if no indirect neighbour is part of the neighbourhood. In this case the number
of single-connected neighbours equals zero.

• Prismatic connectivity: A neighbourhood of a control volume with a prismatic connectiv-
ity consists only of some direct and some indirect neighbours. Away from the boundaries
there are exactly two single-connected neighbours, depicted above and below the seed
volume in Figure 1. If the prisms of the primary grid include boundary surface triangles
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Figure 1. Prismatic neighbourhood: seed volume and direct neighbours (left),
direct and indirect neighbours (right).

Figure 2. Hexahedral neighbourhood: direct neighbours sharing faces (left), indirect neighbours sharing
edges (middle) and neighbours sharing points (right) with the seed volume.

then the number of single-connected neighbours reduces to one. In the usually-avoided
case of prisms with boundary surface quadrilaterals, the number of single-connected
neighbours can increase for some con�gurations, such as a sharp trailing edge of a wing.

• Hexahedral connectivity: A control volume with a hexahedral connectivity possesses a
neighbourhood containing direct neighbours, indirect neighbours and indirect neighbours
of direct neighbours. When connected via hexahedra in an i− j−k structured part of the
mesh a control volume has exactly six direct neighbours, all single-connected, as shown
in Figure 2. The number of single-connected neighbours varies in cases of boundary
contacts from at least three to more than six. If the control volume is located on the
border between a hexahedral and, for example, a tetrahedral part of the grid (with some
pyramids in between) the number of single-connected volumes can decrease to zero.

We de�ne the connectivity of each control volume by the number of single-connected
neighbours. Ignoring some special cases a tetrahedral connectivity is assumed if the number
is zero and a prismatic connectivity is assumed if the number is one or two. A higher number
is assumed to indicate a hexahedral connectivity.

3. AGGLOMERATION ALGORITHM

The algorithm consists of several parts:

• Determination of a �ne grid volume, called the seed volume, around which the coarse
grid cell should be agglomerated.
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• Creation of a maximal set of �ne grid volumes to be fused to the seed volume.
• Selection of a subset of these volumes, including the seed volume.
• Conditionally, creation of a new agglomerated cell or fusion of the subset with an already
existing coarse grid cell.

The �rst item is responsible for the shape of the advancing front, while the next items
in�uence the quality of the coarser grids.

3.1. Determination of the seed volume

The determination of the seed volume is modi�ed to allow the advancing front growing in
the hexahedral or prismatic parts layer by layer on top of the initial boundaries.
As in the standard methods the advancing front starts on special boundary parts, for example

on walls, but not on the far�eld. Within the set of volumes attached to a special boundary
part, the preferred volumes are those located on an edge and optimally those which lie in
a corner of the computational domain since the number of neighbours is reduced and the
optimal fusing easy to determine. Together, this information forms the volume priority. It is
calculated on the primary grid and handed down from each grid to the successively coarser
level.
The selection of the next seed volume within each priority set is controlled by subsets,

called queues. The most simple form consists of only two queues, one containing all volumes
in the beginning of the agglomeration and one for all volumes which have been touch by
the front during the agglomeration procedure. For a more regular growth inside the structured
parts, the knowledge of how often a volume is touched by the front is very useful. For
example in a hexahedral connectivity, a volume faces the corner situation mentioned above
when it is hit three times by the advancing front. But due to the higher number of direct
neighbours, the number of contacts with the agglomeration front increases more quickly in
the prismatic than in the hexahedral parts and even more quickly in the tetrahedral parts of
the grid. Therefore, the volumes are sorted initially into di�erent queues according to their
connectivity; hexahedral parts are preferred to prismatic parts of the mesh, and prismatic parts
are preferred to tetrahedral parts. The higher the number of single-connected neighbours is for
a given volume, the lower is the number of the queue, the volume is assigned to. The current
implementation uses eight queues, with the lowest four only accessed by volumes lying at the
advancing front. If four queues are insu�cient to provide a unique queue for each di�erent
connectivity number, some connectivities are mapped to the same queue.
After each agglomeration step all agglomerated volumes are removed from the queues. Each

time a volume Vi of a higher queue is touched by the front via agglomeration of one or more
direct neighbours of Vi, Vi is added to the next lower queue. To copy the structure of the
underlying layer it is useful to advance within each layer in a similar way. Therefore, further
ordering is done inside the queues. Between several volumes neighbouring the same coarse
grid volume, the neighbours of the seed volume are queued �rst, the neighbours of the direct
neighbours of the seed volume are queued next and the neighbours of indirect neighbours of
the seed volume are queued last.
The search for the next seed volume starts with the volumes of highest priority, and for

equal priorities the queue with the lowest queue number is searched �rst. Within each queue,
the volume which has �rst been touched by the front is elected to be the next seed volume.
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3.2. Maximal set of fusible volumes

To preserve the structure of the grid it is necessary to allow the agglomeration to fuse within
the neighbourhood NVi of the seed volume Vi. The standard method only allows the fusing of
direct neighbours of Vi which is a subset of NVi and avoids this way the creation of coarse
cells consisting of more than one separated volume. For a seed volume in a tetrahedral part
of the grid both sets are equal. In a prismatic region indirect neighbours who have only an
edge in common with the seed volume have to be added (see Figure 1). They can be detected
as direct neighbours of the single-connected neighbours which have another direct neighbour
other than the single-connected neighbour in common with the seed volume.
In hexahedral regions additional neighbours who share only one point with the seed volume

have to be found. These are the direct neighbours of more than one indirect neighbour having
a common edge with the seed volume. The hexahedral situation is depicted in Figure 2.

3.3. Selection of the fusible subset

A typical coarsening ratio in a structured multigrid code is 8 for three dimensional applications
and 4 in the two-dimensional case. The maximal set of volumes for a hexahedral connectivity
o�ers 27 �ne grid cells, as shown in Figure 2. Therefore it is su�cient to select a subset of
the maximal set to provide good coarser grids. The most obvious restriction to the fusible set
is that volumes cannot be agglomerated to more than one seed volume. As the agglomeration
front advances, the next seed volume is found near to already fused volumes. After reducing
the size of a fusible subset, the connectivity of all non-direct neighbours is checked to ensure
that the coarse volume is simple connected. Otherwise coarse cells can be generated with
volume parts sharing not more than a common edge or point.
Besides the usual restrictions of the isotropic agglomeration like a surface-to-volume ratio

criterion applied in tetrahedral parts, a special constraint is introduced for the structured parts:
Cutting the structure of an underlying layer: In a prismatic or hexahedral region of the

grid, the algorithm tries to advance layer by layer over the initial front. A new coarse grid
volume is only allowed to be on top of more than one coarse grid volume of the underlying
layer if these already fused volumes are covered completely by the new volume. The earliest
fused, single-connected neighbour of the seed volume indicates the underlying coarse volume.
The allowed fusing situations, simpli�ed in two dimensions, are depicted in the left part of
Figure 3 and a typical cut situation in the right part.

Figure 3. Left diagram: allowed fusing: new volume covers old volumes completely (left), new volume
covers exactly one old volume (middle) and new volume lies inside the cover of one old volume. Right
diagram: the parts of the new volume divided by the broken line are not allowed to be fused together

due to the structure of the underlying layer.
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Figure 4. After cutting the new fusible set, some volumes are agglomerated to a previously fused cell.

3.4. Fusing to coarse grid volume

In addition to the cutting procedure described above, an agglomeration with an already fused
neighbour is allowed in special situations to prohibit hardly fused volumes. One situation
occurs when di�erent parts of the agglomeration front reach each other and some seed volumes
are left with no or only one fusible neighbour. Another case, shown in Figure 4, is a result
of a cutting to preserve the structure of an underlying layer.

4. EXAMPLES

Structured two-dimensional C-grid: The isotropic algorithm produces the coarser grids de-
picted in the upper row of Figure 5. Using the modi�cations discussed previously to preserve
the structure, the grids (shown in the lower row of Figure 5) provide a similar quality to grids
generated with the knowledge of the i − j − k structure of the primary grid. The coarsening
ratio of the volumes increases from 2.1 (coarser levels 3.4, 3.4) to 4.0 (4:0; 4:0) and the edge
ratio from 1.5 (2:7; 3:0) to 4.0 (3:9; 3:9).

Figure 5. Top: Dual grid of the primary grid and coarse grids agglomerated with the isotropic algorithm.
bottom: Dual grids agglomerated with structure preservation.
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Figure 6. Hybrid (tetrahedra=prisms) mesh around a 3d wing: top: primary and agglomerated dual grids
in the symmetry plane, bottom: primary grid in two cut planes, coarser grids in the second cut plane.

Three dimensional wing: A prismatic sublayer around the wing forms the structured part
of the grid, and a tetrahedral discretization covers the rest of the computational domain. As
shown in Figure 6, the structure on the coarser levels is preserved as long as the structured
part is thick enough to keep the agglomeration inside the prismatic layer.
Multi element airfoil: A two-dimensional experimental discretization around a three ele-

ment airfoil is depicted in Figure 7. The generation of the primary grid starts with three
independent O-grids around each element consisting of 24 layers of hexahedra. These grids
are locally reduced to prohibit any overlap and to prevent an aspect ratio (tangential to normal
distance) smaller than 1 at the outer boundary. The gaps and the rest of the �ow�eld are
subsequently �lled with prisms. The structure of the hybrid grid is still visible on the coarsest
grid.

5. CONCLUSIONS AND PERSPECTIVES

Topological arguments enable the detection of the underlying primary grid structure in the
reduced information of the dual grid. They are used to protect the topological structure dur-
ing the agglomeration process. The necessary modi�cations of the standard advancing front
algorithm are discussed in detail. The presented results show the ability of the modi�ed ag-
glomeration to protect the structure of simply structured grid parts (O- or C-meshes with one
front direction) in two as well as three space dimensions and with hybrid meshes. The coars-
ening ratios of the volumes and the reduction of edges in the structured part becomes equal
to values achieved on structured grids. Therefore, the computing time needed per multigrid
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Figure 7. Multi element airfoil, two detailed views of the primary grid, the dual grid
and three agglomeration levels.

cycle is reduced. The preserved structure o�ers the opportunity for future comparison of the
performance of structured and unstructured methods on similar meshes.
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